Back to the roots using regular sound correspondences for linguistic phylogeny (as one should)

> Michael Cysouw Philipps Universität Marburg

> > Bern, 24 November 2012

Methods for Lexical Comparison

- Comparative Method
- Swadesh Method
- Black Box Method
- Alignment Method
- Sound Change Method

Comparative Method

Lexical

Swadesh Method

• Necessary prerequisite known cognacy in parallel wordlist

Method

Reconstruct history from distribution of cognates

Swadesh Method

- Language distances Swadesh (1952)
- Stochastic model with first tree
 Sankoff (1969), Dobson (1969)
- Modern replacement model
 Gray & Jordan (2000), (Gleason 1959)

FIG. 2. Internal and external relationships of the Penan micro-phylum.

Swadesh, Morris. 1952. Lexico-Statistic Dating of Prehistoric Ethnic Contacts: With Special Reference to North American Indians and Eskimos. Proceedings of the American Philosophical Society 96(4). 452-463.

Swadesh, Morris. 1959, "Linguistics As An Instrument of Prehistory. Southwestern Journal of Anthropology 15, no. 1: 20-35.

David Sankoff

Annette J. Dobson

Dobson, A J. "Lexicostatistical Grouping." Anthropological Linguistics 11, no. 7 (1969): 216-221. Dobson, Annette J. "Unrooted Trees for Numerical Taxonomy." Journal of Applied Probability 11, no. 1 (1974).

Fig. 16. Tree of Indo-European languages as reconstructed from data in Table 4.

Sankoff, D. "Historical Linguistics As Stochastic Process." PhD Dissertation. McGill University, 1969.

Gray, Russell D, and Fiona M Jordan. "Language Trees Support the Express-train Sequence of Austronesian Expansion." Nature 405 (2000): 1052-1055. Gleason, H A. "Counting and Calculating for Historical Reconstruction." Anthropological Linguistics 1, no. 2 (1959): 22-32.

Lexical

Black Box Methods

Necessary prerequisite
 Global orthographic model
 ("same alphabet for all data")

Method

Compare global orthographic similarity

Black Box Methods

- Aggregate Levenshtein Distance Batagelj et al. (1992), Kessler (1995)
- **N-Gram Similarity** Huffman (1998)
- **Zipping Distance** Benedetto et al. (2002)

Aggregate Levenshtein Distance

Batagelj, V, T Pisanski & D Kerži. 1992. Automatic clustering of languages. Computational Linguistics 18(3). 339-352.

N-Gram Similarity

Huffman, Stephen M. "The Genetic Classification of Languages by N-Gram Analysis." PhD Thesis, Washington, D.C.: Georgetown University, 1998.

Appendix 9. Divergence from reference classification

Text display:

N-gram Length	1	2	3	4	5	6	7
Chained, No centroid	514	278	302	217	344	539	490
Not Chained, Centroid	286	208	161	176	302	379	375
Not Chained, No Centroid	514	278	302	228	344	417	383
Chained, Centroid	286	208	161	188	246	261	493
Suppress Negative	360	506	233	215	307	420	491

Divergence from Reference Classification vs. n-Gram Length

Zipping

Zipping

Normalized Compression Distance

$$NCD(x, y) = \frac{C(xy) - \min\{C(x), C(y)\}}{\max\{C(x), C(y)\}}$$

(C = compressed size)

Comparative Method

Alignment Method

• Necessary prerequisite

Global orthography model and parallel wordlist

Method

Discover sound correspondences, possibly together with decision on cognacy

Alignment Method

- Alignment
 Covington (1996, 1998)
- Relation to Levenshtein
 Kondrak (2000)
- Multiple Alignment
 Bhargava & Kondrak (2009), Prokić et al. (2009)

Spanish/Italian/French 'five': θ i ŋ k - 0 c i ŋ k we s ẽ - k - -

Covington, Michael A. "Alignment of Multiple Languages for Historical Comparison." In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics. 1998.

	Со	vingt	on's a	lignn	nents		ALINE's alignment					S	
three : trēs	θ	r	i	у					θ	r	iy]]	
	t	r	ē	S				ļļ	t	r	ē	Ï	S
blow : flāre	b	1	-	-	0	w			b	1	ο	11	w
	f	1	ā	r	e	-			f	1	ā	I	re
full : plēnus	f	-	-	-	u	1			f	u	1		
	р	1	ē	n	u	S			р	-	1		ēnus
fish : piscis	f	-	-	-	i	š			f	i	š		
	р	i	S	k	i	S			р	i	S	Î	kis
I : ego	-	-	а	у					ay				
	e	g	0	-					e		go		
tooth : dentis	-	-	-	t	u	w	θ			t	uw	θ	
	d	e	n	t	i	-	S	de	en ∥	t	i	S	

Kondrak, Grzegorz. "A New Algorithm for the Alignment of Phonetic Sequences." In Proceedings of the 1st North American Chapter of the Association for Computational Linguistics Conference. Morgan Kaufmann Publishers Inc., 2000.

D - E - N -Z - E - N -DZIE--N-DI-E--NA D--I-A-D - T - F -Z--U--E-J--0--UR DJ-O--U-

Bhargava, Aditya, and Grzegorz Kondrak. "Multiple Word Alignment with Profile Hidden Markov Models." In Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Student Research Workshop and Doctoral Consortium (NAACL-HLT 2009). Boulder, Colorado: Association for Computational Linguistics, 2009.

Prokić, Jelena, Martijn Wieling, and John Nerbonne. "Multiple Sequence Alignments in Linguistics." In Proceedings of the EACL 2009 Workshop on Language Technology and Resources for Cultural Heritage, Social Sciences, Humanities, and Education (LaTeCH-SHELT&R 2009). Association for Computational Linguistics, 2009.

Sound Change Method

• Necessary prerequisite

(Large) parallel wordlist, but **no** global harmonized orthography

Method

Discover sound correspondences through regularity, and use that to discover cognacy

Sound Change Method

- Rule-based automatic reconstruction (Hewson 1973, Lowe & Mazaudon 1994)
- Sound co-occurrence
 Ross (1947)
- Cross-script mapping Cysouw & Jung (2007)

Lowe, John Brandon, and Martine Mazaudon. "The Reconstruction Engine: A Computer Implementation of the Comparative Method." Computational Linguistics 20, no. 3 (1994): 381-417. Now let me put the matter more rigidly. Suppose I take 1000 common ideas, numerals, parts of the body, names of relatives, etc. and express them in English and German. I now prepare a Table of the following kind:

English

← German

	[pf]	[ts]	[t]	[f]	[b]	•••••
[P]	x		x			
[f]		x		x x x ¹ x x x		
[t]	x	x x x ² x x x x			x	
[d]			х х х ³ х		x4	
•			·			
•						
•						

0.0 0.2 0.4 0.6 0.8 1.0 dice coefficient

Cross-script mapping

E	R	freq	dice
r	р	184	0.88874745
n	н	115	0.8461936
1	Л	104	0.79646295
S	с	114	0.7927922
t	Т	165	0.7701921
m	м	47	0.7699933
0	0	184	0.7510106
k	ть	21	0.74458015
p	п	50	0.7388723
i	И	102	0.7034591
a	a	221	0.6866478
u	у	40	0.6449104
c	к	77	0.6251676
e	e	219	0.59066784
b	б	32	0.525643
w	В	46	0.46787763
d	Д	42	0.381996
:	•	•	

Cysouw, Michael & Hagen Jung. 2007. Cognate identification and alignment using practical orthographies. Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology, 109-116.

'bag of symbol" approach

'bag of symbol" approach

 Ignore linear structure of words "bag of symbols" approach

- Ignore linear structure of words "bag of symbols" approach
- Use parallel wordlist to estimate co-occurrences of n-grams

- Ignore linear structure of words "bag of symbols" approach
- Use parallel wordlist to estimate co-occurrences of n-grams
- N-grams that have a high probability of co-occurrence in parallel meaning are interested for historical linguistics

	Bora	Muinane
down	t∫în ^j e, paári	báari, gíino
bee	íímú?óexp ^h i, té?ts ^h ipa	nîibiri, mîibiri?i
sharp	ts ^h ú?xɨβáne	siixéβano
• • •	• • •	• • •

Bora	Muinane	Bora	Muinane	Bora	Muinane
#k	$\#k^{h}$	#i	#i	#n	#n
ki	k ^h u	#a	#a	#m	#m
se	ts ^h i	di	ti	mi	mш
xe	xi	du	to	ni	nw
ga	k ^w a	#d	#t	us	ts ^h i
ba	ра	#s	#ts ^h	#t	#t ^h
#b	#p	gi	t∫i	ig	uuk ^w
e#	i#	ni	ni	#∳	$\#p^h$

Using bigram matching for cognate detection

Using bigram matching for cognate detection

 Bora 'two': mín^jéék^huú Muinane 'two': míínoki

Using bigram matching for cognate detection

- Bora 'two': mín^jéék^huuú Muinane 'two': míínoki
- Extension of Levenshtein (1966): Needleman-Wunsch (1970)

	#m	mi	ii	in	no	ok	k i	i#
#m								
mi								
in ^j								
n ^j e								
ee								
ek ^h								
k ^հ ա								
աա								
u#								

Levenshtein

	#m	mi	ii	in	no	ok	k i	i #
#m	1							
mi		1						
in ^j			?					
n ^j e				?				
ee					?			
ek ^h								
k ^հ ա								
աա								
u#								

Levenshtein, VI. "Binary Codes Capable of Correcting Deletions, Insertions, and Reversals." Soviet Physics Doklady 10 (1966): 707–710.

Needleman-Wunsch

	#m	mi	ii	in	no	ok	k i	i #
#m	22	3	2	2	2	2	2	2
mi	4	12	2	2	5	I	I	Ι
in ^j	2	I	5	9	3	I	I	2
n ^j e	I	I	5	5	4	I	I	2
ee	3	3	3	3	6	2	2	2
ek ^h	Ι	2	Ι	Ι	4	2	3	2
k ^հ ա	2	2	2	2	2	I	23	2
աա	2	2	3	3	2	2	4	4
u#	2	2	3	2	3	I	3	4

Needleman, S B, and C D Wunsch. "A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins." Journal of Molecular Biology 48, no. 3 (1970): 443-453.

	#m	mi	ii	in	no	ok	k i	i #
#m	22	3	2	2	2	2	2	2
mi	4	12	2	2	5	I	I	I
in ^j	2	I	5	9	3	I	I	2
n ^j e	Ι	Ι	5	5	4	Ι	Ι	2
ee	3	3	3	3	6	2	2	2
ek ^h	Ι	2	I	I	4	2	3	2
k ^հ ա	2	2	2	2	2	Ι	23	2
աա	2	2	3	3	2	2	4	4
u#	2	2	3	2	3		3	4

	#m	mi	ii	in	no	ok	k i	i #
#m	22	3	2	2	2	2	2	2
mi	4	12	2	2	5	I	I	I
in ^j	2	I	5	9	3	I	I	2
n ^j e	Ι	Ι	5	5	4	Ι	Ι	2
ee	3	3	3	3	6	2	2	2
ek ^h	Ι	2	I	I	4	2	3	2
k ^հ ա	2	2	2	2	2	Ι	23	2
աա	2	2	3	3	2	2	4	4
u#	2	2	3	2	3		3	4

#m	mi	ii	in	no		ok	ki	÷;	#
#m	mi	ir	٦ ^j	n ^j e	ee	ek ^h	k ^հ ա	աա	ա #

	#m	mi	ii	in	no	ok	ki	i #
#m	22	3	2	2	2	2	2	2
mi	4	12	2	2	5	I	I	I
in ^j	2	I	5	9	3	I	I	2
n ^j e	I	I	5	5	4	I	I	2
ee	3	3	3	3	6	2	2	2
ek ^h	I	2	I	I	4	2	3	2
k ^հ ա	2	2	2	2	2	I	23	2
աա	2	2	3	3	2	2	4	4
u#	2	2	3	2	3	I	3	4

	Ocaina	Witoto Murui	
HAND	oņõõ	onoczw	
WE	хохо	koko	
HOUSE	фоо	фо	
DOG	hõ?xo	huko	
JAGUAR	hõ?xo	huko	
FATHER	mõõ	moo	
HUMMINGBIRD	∳a?tíí?t ⁱ o	φiθido	
TREE	amູພົພົກູa	amena	
STICK	amູພົພົກູa	amena	
WHO	bố	bu	
SLEEP	ưưnõ	աոա	
AGOUTI	φứιứt ⁱ ο	φuido	
THIS	bîî	bie	
THIS	ba?i	bie	
NAME	maamu	mameku	
DAY	тооџа	aremona	
BOW	tsipóxat ⁱ a	θwkuira	
HEAR	xaaxa	kakade	
DAY	moņamó	aremona	

	Ocaina	Witoto Murui	
GREASE	þ ahĩĩ		
YOU (PLURAL)	mõ?	omow	
THIS	bɯ	bie	
ARROW	owd ^j áát ^j a	dukura0u	
SPEAR	oɯdʲáátʲa	dukuraθu	
LIP	∳a?óó?ko	фue igoш	
GREEN	moxóóso	mokorede	
I	XÕ	kue	
ONE	t ^j a	dahe	
WE	XO	kaw	
тоотн	a?tii?t ^j o	iθido	
MOUTH	фоош	фue	
BELLY	gááho	hebe	
FATHER	mõõhõ	moo	
YOU (PLURAL)	mõ?xo	omuko	
SWAMP	xonúúβaga	kunere	
RAT	mɯɲố́ốko	тілше	
PATH, TRAIL	naahõ	пашθо	
OWL	mốốņõhõ	monuiθɯ	

• Regular sound change is a very powerful notion to investigate language history

• Regular sound change is a very powerful notion to investigate language history

• We knew that for a long time !

we just seem to have forgotten about it in computational approaches

- Regular sound change is a very powerful notion to investigate language history
- We knew that for a long time ! we just seem to have forgotten about it in computational approaches
- Regular symbol correspondence can relatively easily be discovered statistically before cognate identification

- Regular sound change is a very powerful notion to investigate language history
- We knew that for a long time ! we just seem to have forgotten about it in computational approaches
- Regular symbol correspondence can relatively easily be discovered statistically before cognate identification
- Reversing the comparative method first sound change, then cognacy judgement