On the distribution of rare characteristics

Michael Cysouw

Max Planck Institute for Evolutionary Anthropology

The basic idea

- Use the WALS data for 'holistic' typology
- Not look at the content of the features, but at their relative ubiquity
- Are there languages/families/areas that have more rare features than other?

And the winners are:

In the category 'Rarest Individual Language'

Wari'

In the category 'Rarest Genealogical Group'

Northwest Caucasian

In the category 'Rarest Geographical Area'

Northwest Continental Europe

Distribution of values

- 138 features, total 643 values
- Chance distribution complex because of varying number of values per feature
- Distribution is highly skewed there are more than expected many:
 - extremely rare values
 - mid-range values

Distribution of values

WALS data

Oensity 0.0 0.2 0.4 0.6 0.8 1.0

Percentage of occurrence of feature values

Random simulations

Percentage of occurrence of feature values

Rarity Index R_i

n = number of feature values

 f_i = frequency of feature value i

 f_{tot} = total number of languages included

$$R_{f_i} = n \cdot \frac{f_i}{f_{tot}}$$

Inverse Index

I used the inverse instead:

$$R_i = \frac{f_{tot}}{n \cdot f_i}$$

Because the mean of all R_i values is one:

$$\frac{\sum_{i=1}^{n} (R_i \cdot f_i)}{f_{tot}} = 1$$

Rarity Index for a language

- Each language gets a list of *Rarity Indices*, one for each feature-value in the WALS
- How should a list of *Rarity Indices* be interpreted?
- I tried various approaches (mean, median, various kinds of weighted means, with/without normalisation of the indices)
- They all correlated highly with each other, so I hold on to the simple mean

Rarity Index for a language

- What is the 'most rare' language?
- Simply taking the highest *Mean Rarity* is no good...
- If only few features are coded in the WALS, there will be strong random effects
- Plot *Mean Rarity* by number of features coded:

Rarity Index for a language

- Assess distribution by randomisation
- Keeping the actual numbers of the featurevalues constant, I constructed random languages for each number of features
- This gives a value for the internal extremes (i.e. how extreme is a language within the given set of WALS languages)

Highest Mean Rarity

Language	Family	Genus	Features Coded	Mean Rarity	%
Wari'	Chapacura- Wanhan	Chapacura- Wanhan	115	2.36	99.9
Dinka	Nilo-Saharan	Nilotic	45	3.45	99.9
Tiipay (Jamul)	Hokan	Yuman	44	3.76	99.9
Nuer	Nilo-Saharan	Nilotic	28	3.42	99.9
Karó (Arára)	Tupian	Tupi-Guaranì	24	6.16	99.9
Winnebago	Siouan	Siouan	7	11.37	99.9

Top 5% by Mean Rarity

Mean Rarity of all languages (red = rare, blue = common)

Mean Rarity of all languages, printed in reverse colour order (red = rare, blue = common)

All languages with more than 60 features coded for (red = rare, blue = common)

Rarity Index for a group

- How to evaluate the relative rarity of a group of languages?
- Simply taking the mean of all languages is too crude
- I decided to take a weighted mean of the extremity percentages
- The result is a mean of various percentages
- This is difficult to interpret, but it can be used for ranking

Rarity Index for a group

```
n = number of languages in a group
```

$$L_i$$
 = number of features coded for language i

$$%R_i$$
 = Relative position of mean of all Rarity
Indices for language i

Weighted mean of $\%R_i$ by number of features coded:

$$\frac{\sum_{i=1}^{n} \log(L_i) \cdot (\%R)_i}{\sum_{i=1}^{n} \log(L_i)}$$

Genealogical groups

- Compute *Group Indices* for all Families and Genera as coded in the WALS
- Only groups with more than three members are shown, to be sure to get a group measure, and not an effect of an individual language

Top 5 Families

Family	Languages	%
NorthwestCaucasian	7	87.8
Kartvelian	4	83.7
Caddoan	5	82.2
Wakashan	7	80.2
Iroquoian	8	76.3

Top 5 Families

Areal groups

- For each language, take the 30 geographically nearest languages
- Compute *Group Indices* for the surrounding area of each language
- Such a measure should be definition be areally consistent, but it can indicate geographical centers of 'rarity'

Top 100

Top 200

Top 300

All languages

(red = rare, blue = common)

All languages

(only taking nearest 10 languages)

