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Abstract 

Dunn et al. (2011) propose an innovative approach to establishing typological correlations. Their 

fascinating method exemplifies the dynamicization of linguistic typology. Instead of estimating 

relative frequencies of types, they switch to estimating transition probabilities between types. 

This commentary will present some background to better understand this approach, because an 

in-depth explanation of the underlying assumptions is unfortunately lacking in their rather short 

paper. This additional explanation is intended to clarify why the Dunn et al. paper deserves 

careful examination in the field of linguistic typology. 

 

Notwithstanding the important methodological innovation of this paper, there are problems with 

their interpretation of the empirical results. Basically, and contrary to their claim, it does not 

seem to be the case that “most observed functional dependencies between traits are lineage-

specific rather than universal tendencies”. Obviously, there is variation between lineages, but no 

previously proposed word-order universal is contradicted by the variation attested in the Dunn et 

al. paper. For the current criticism, I will only use the data and results from their paper, so the 

problems presented here really concern the interpretation of the results and not the method as 

such.  
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1. Galton’s problem 

A central empirical objective of the field of linguistic typology is to estimate the relative 

frequency of a particular language type (or cross-section of types) among human languages. In 

the traditional approach, the empirical frequency of a type among the known world's languages 

is interpreted as indicative of the universal probability for this type. However, it has been 

obvious to all practitioners ever since the dawn of linguistic typology that there are many 

unwanted coincidental factors influencing these empirical frequencies, like genealogical 

relationship or areal convergence. To correct for such influences, there is a long tradition in 

typology of various kinds of sampling of the world's languages. Typically, only a single language 

per known genealogical (sub)grouping is included in the sample and a diverse geographical 

spread of the sampled languages over the whole world is preferred. Many variants of such 

sampling have been discussed in the typological literature over the last few decades (cf. 

Cysouw 2005 for a survey). 

 

This problem is more widely known in statistics as autocorrelation, and more specifically as 

‘Tobler’s Law’ in geography (Tobler 1970) and ‘Galton’s problem’ in anthropology (Naroll 1961). 

Sir Francis Galton originally raised this problem in the discussion after a presentation by Sir 

Edward B. Taylor (1889) on establishing cross-cultural correlations. In his reply to Galton’s 

objection, Taylor immediately suggested to use some sort of stratified sampling, the favourite 

solution ever since: “The difficulty raised by Mr. Galton that some of the concurrences might 

result from transmission from a common source, so that a single character might be counted 

several times from its mere duplication, is a difficulty ever present in such investigations […]. 

The only way of meeting this objection is to make separate classifications depend on well 

marked differences, and to do this all over the world” (Taylor 1889: 272). 

 

Although sampling is an easy solution for removing the most glaring effects of autocorrelation, it 

is far from an ideal solution. First, sampling reduces the already rather limited amount of data 

available about the world’s language, so any generalisation has to be made on the basis of less 
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than possible data (cf. Perkins’ 1989 proposal that it might not be possible to sample more than 

50 independent languages). Second, there might be unrecognized genealogical or areal 

groupings, not acknowledged in the sampling, which leads to inflation of the frequency of a type, 

notwithstanding the sample. Even more problematic is the possibility that the actual world's 

languages are not representative of the possible human languages. It is possible that there are 

still founder effects available in the current distribution of the world's languages, i.e. that there 

are preferences in the current world's languages that go back to incidental events during the 

spread of languages over the world (Maslova 2000). 

 

A much more suitable solution to Galton’s problem has been proposed by Mark Pagel (1994, 

see also Mace & Pagel 1994), and the method used by Dunn et al. is a direct descendant of this 

proposal. The software used by Dunn et al, called BayesTraits (Pagel & Meade 2006) is 

developed by Mark Pagel and his collaborators as an implementation of the method proposed in 

the earlier papers. The basic underlying idea is to change perspective from trying to establish 

empirical frequencies of a particular linguistic type to estimating transition probabilities between 

linguistic types. To be able to obtain such estimates, we need a rather different kind of sample. 

Instead of sampling across known genealogical units, we now need to sample within such 

groups. By assessing the internal variation within a language family it becomes possible to 

estimate the probability of change. In the field of linguistic typology, this methodological 

approach has been independently proposed by Elena Maslova (2000: 328-329; 2002; 2004; 

Maslova & Nikitina 2008). Following her work, this approach might be called ‘dynamic typology’. 

 

In this commentary, I will first discuss the principle of using transition probabilities, and how 

these probabilities can be used to infer a stable state (Section 2). Then I will briefly sketch two 

different approaches to the empirical estimation of the transition probabilities (Section 3). 

Finally, on this basis I will discuss the claims made by Dunn et al. and argue that they seem to 

misinterpret their own results, both in relation to the typological correlations (Section 4) and with 

respect to the variability of the transition probabilities (Section 5).  
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Although I completely agree with their approach, I think that they too easily dismiss the 

consistency in their findings and focus too much on the variation attested. There is indeed 

variation between families (which can hardly be said to be surprising), but this variation mainly 

leads to absence of evidence for cross-linguistic generalization, not to to any evidence for their 

absence. The limited amount of convergent evidence available in their data actually 

substantiates widespread assumptions about the preferred word orders of human languages. 

2. Introducing transition probabilities 

To explain the concept and implications of transition probabilities, consider first a simple 

typology T, classifying languages into just two different types, A and B. The traditional empirical 

objective of linguistic typology is to estimate the relative frequency F(A) and F(B) of these types, 

for example, that A occurs in 79% of the world’s languages and B in 21% (i.e. F(A) = 0.79 and 

F(B) = 0.21). In dynamic typology, the objective is changed to estimating transition probabilities 

between A and B, for example, that A changes to B with a probability of pAB = 0.13, while B 

changes to A with a probability of pBA = 0.48.  

 

There are three important aspects of transition probabilities that have to be clarified. First, such 

transition probabilities describe the probability that a change happens within a particular time 

frame. Of course, this time frame should ideally be concretely specified, for example, whether 

the transition probabilities describe a probability of change within 100 years, or 5000 years. 

However, in most practical applications of transition probabilities, to be explained shortly, the 

concrete size of the time frame turns out to be unimportant, as long at it is kept constant. 

Therefore, it is mostly unnecessary to specify the concrete time frame, and it is sufficient to 

simply speak about timeless transition probabilities. However, for any comparison of specific 

values for transition probabilities, it has to be ascertained that the time frames are comparable. 

 

Second, transition probabilities are independent values, contrary to the relative frequencies. 

With reference to the numbers as used above as an example, the relative frequencies of A 
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(79%) and B (21%) necessarily add up to a 100%, i.e. F(A) + F(B) = 1.1 In contrast, the 

transition probabilities from A to B (0.13) and from B to A (0.48) do not add up to one. This is 

the normal situation, because there is no definitional relation between the probability of a 

change from A to B (henceforth pAB) and the probability of a change from B to A (henceforth 

pBA). The complement of pAB (i.e. the value 1-pAB = 0.87) represents the probability that there 

was no change from A to B, i.e. the probability that a language of type A remains to be of type A 

in the (unspecified) time frame considered. The probability of change (0.13) and the 

corresponding probability of no change (0.87) add up to one. But the probability of change in the 

one direction (0.13) is independent of the probability of change in the other direction (0.48). 

(1) 

 

 

Finally, the empirical establishment of transition probabilities is a process of estimation. There is 

no claim that it is necessarily possible to actually pinpoint a real value for any specific transition. 

It is possible that attempts to estimate such values turn out not to stabilize, so we might have to 

conclude that some assumed transition probabilities are situation dependent. Further, even 

when the estimates stabilize, any proposed value will have an error margin, which is ideally 

explicitly specified. 

 

The most important auxiliary value that can be derived from a set of transition probabilities is the 

stable state. When transition probabilities remain the same over a longer period of time, then it 

is possible to predict the stable distributions of the types A and B, i.e. the situation in which the 

relative frequencies of languages of type A and B do not change anymore. This stable state 

                                                
1 This equation of course only holds under the condition that we only strictly allow languages to 

be of either type A or B and nothing else. Adding the possibility of intermediate types 

corresponds to allowing more possible types than just two. 

BA
pAB

pBA
1-pAB 1-pBA

no changeno change change
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represents the dynamic equivalent of the traditional estimate of relative frequencies. The basic 

idea of the stable state is that language change is still happening, but this language change 

does not result in different relative frequencies of A and B. Such a stable state arises when the 

number of languages that change from A to B is identical to the number of languages that 

change from B to A (within a specific time frame). Now, the number of languages that change 

from A to B is easily expressible as the product of the relative frequency of A and the probability 

that any of those languages changes to B, i.e F(A)·pAB and vice versa for the change from B to 

A, F(B)·pBA. In the stable state, these two values have to be identical: 

 

(2) Fstable(A)·pAB = Fstable(B)·pBA 

 

Because in the stable state the frequencies of A and B still add up to 100%, we also have: 

 

(3) Fstable(A) + Fstable(B) = 1 

 

These two equations with two unknowns are easily solved to a formula for the stable state 

frequency as expressed by the transition probabilities: 

 

(4) Fstable(A) = pBA / pBA + pAB 

 Fstable(B) = pAB / pAB + pBA 

 

Using the exemplary values from above this would result in: 

 

(5) Fstable(A) = 0.48 / 0.48 + 0.13 = 0.79 

 Fstable(B) = 0.13 / 0.13 + 0.48 = 0.21 

 

As an aside, note that the same stable state frequencies can arise from rather different 

transition probabilities. Further, because of the division of transition probabilities, any specific 

time frame of the transition probabilities is removed from the stable state frequency, so the 
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stable state is independent of the time frame in which the transition probabilities are 

established.  

 

Another linguistically useful auxiliary notion that can be derived from the transition probabilities 

is the stability of a typological parameter T. The basic concept of typological stability is to 

estimate the probability that there is no change at all (Dediu 2011). So, in case of a typological 

parameter T with two possible types A and B, the probability of no change happening among 

the type-A-languages is 1 – pAB, while the probability of no change among the type-B-languages 

is 1 – pBA. As a measure of overall stability of the typological parameter T one could for example 

simply take the average of these two values: 

 

(6) S(T) = (1 – pAB) / 2 + (1 – pBA) / 2 

 

This example of the usage of transition probabilities only represents the most basic situation 

with just two discrete types. When more types are allowed, or even continuous variation is 

included, the mathematics become quickly more complicated. In general, with n possible types, 

the number of transition probabilities to be estimated is n2-n, which empirically becomes 

unmanageable for higher n. 

 

Dunn et al. use a second, more complex model with four states, representing a cross-section of 

two binary typological parameters (see Section S1.4 of the supplementary information of their 

paper for a detailed explanation). With four types, the number of transition probabilities to be 

estimated is 42-4 = 12. However, to keep the estimation manageable, only eight of these twelve 

transition probabilities are estimated (following the proposal of Pagel 1994). The idea is to only 

consider transitions that change one type at a time and ignore (as a simplification) the 

transitions that change both parameters at once. For reasons of space, I will not spell out the 

complete derivation, but the equations to establish the stable state are the following in this 

situation: 
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(7) Fs(A)·(pAC + pAD) = Fs(C)·pCA + Fs(D)·pDA  

 Fs(B)·(pBC + pBD) = Fs(C)·pCB + Fs(D)·pDB  

 Fs(C)·(pCA + pCB) = Fs(A)·pAC + Fs(B)·pBC  

 Fs(D)·(pDA + pDB) = Fs(A)·pAD + Fs(B)·pBD  

 Fs(A) + Fs(B) + Fs(C) + Fs(D) = 1 

 

These equations are rather easily solvable, but the resulting formulas are too large and 

unwieldy to write down explicitly here. However, the basic point is that given a set of transition 

probabilities, it is relatively easy to derive the frequencies in the stable state, which is the 

equivalent in dynamic typology to the traditional estimation of frequencies through a sample of 

the world’s languages. 

3. Estimating transition probabilities 

The remaining (big) problem of course is how to empirically estimate transition probabilities. The 

crucial insight is that variation within groups of related languages can be used to perform such 

estimation.2 This insight to use variation within groups represents almost a complete reversal of 

sampling in typology. Traditionally, variation within groups of closely related languages has 

been considered a nuisance in typology (cf Dryer 1992 and Bickel 2008 for proposals how to 

include group-internal variation in the construction of a sample). In contrast, variation within 

groups is crucial for dynamic typology. 

 

Maslova proposed a practical implementation of this approach on the basis of what she calls the 

divergence rate: “The divergence rate is measured for a sample of pairs of related languages 

with a relatively small time depth and corresponds to the frequency of pairs that exhibit different 

values of this variable” (Maslova & Nikitina 2008). So, instead of sampling one language per 

                                                
2 In most cases, such groups of languages will consist of genealogically related languages, but 

it is equally possible to include areal groupings. Due to lack of space I will restrict myself here to 

the discussion of groups of genealogically related languages.  
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genealogical group, she proposes to sample two (closely related) languages per group and to 

investigate how often these two languages differ typologically. In the case of a simple typology 

with only two types A and B and two transition probabilities pAB and pBA, Maslova (2002; 2004) 

derives the following astonishingly simple formula for the divergence rate F(D): 

 

(8) F(D) = 2·F(A)·(pAB – pBA) + 2·pBA·(1 – pAB) 

 

Because both F(D) and F(A) are known in any sample of language-pairs, the transition 

probabilities can be calculated when at least two such samples are available (because of the 

two unknowns, pAB and pBA), which can be obtained by e.g. by splitting the world’s languages 

into two subsamples.  

 

Dunn et al. (based on the proposals from Pagel 1994) use a different practical implementation 

of this same insight to use group-internal variability. They use highly detailed reconstructions of 

a single family tree to estimate the transition probabilities. For a large group of related 

languages they establish their typological types, and given the distribution of these types over 

the genealogical tree, the transition probabilities can be estimated. This method already works 

for just a single family, given that data for enough languages is available.  

 

Both these practical implementations to estimate transition probabilities represent two nicely 

complementary approaches, and it would be highly interesting to investigate the agreement 

between their results. However, to be able to compare both these approaches, and to develop 

different methods to estimate transition probabilities, it is of central importance that more 

typological collections move away from the traditional method of typological sampling. Instead 

of sampling one language per genealogical unit, it is actually much more informative to sample 

various languages from the same unit. One practical approach could be the sampling of pairs of 

closely related languages, as proposed by Maslova. Another possibility is to select just a few 

lineages and sample them densely, as exemplified by Dunn et al. Practically, a typological 

sample of 100 languages will then not consist of 100 languages from different genealogical 
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groups, but it will consist of, say, pairs from 50 different groups, or even just 10 groups with 

about 10 languages from each. Note that it is not necessary to collect equally sized groups. 

4. Correlating transition probabilities 

Dunn et al. do not restrict themselves to estimating transition probabilities for various typological 

parameters, which would already have been a highly innovative and useful addition to the field 

of linguistic typology. They even go one step further and propose a new method to establish 

typological correlations between parameters on this basis. The basic insight here is to 

investigate whether the typological characteristics co-evolve in the linguistic lineage as 

represented by a family tree. Unfortunately, they seem to misinterpret the results from their 

investigation. They claim that “contrary to the Greenbergian generalizations, we show that most 

observed functional dependencies between traits are lineage-specific rather than universal 

tendencies” (p.79). I will argue, in contrast to this claim, that their results show clear agreement 

across lineages. These agreements are indeed not very strong, so their results—to a large 

extend—only shows absence of evidence for word order correlations. However, absence of 

evidence should not be confused with evidence of absence. The absence of evidence might 

very well depend on the small number of just four lineages that are investigated. I strongly 

expect that the evidence will become clearer once more different families are investigated. 

 

In practice, Dunn et al. investigate typological correlations by comparing two different 

hypotheses for each combination of two parameters.3 For example, they consider the 

combination of the OV/VO parameter and the postpositions/prepositions parameter. First, the 

independent hypothesis represents the model in which these two parameters are not correlated. 

In this model, the transition probabilities are calculated for each parameter individually using the 

simple model from Section 2 with just two types and two transition probabilities. Second, the 

dependent hypothesis represents the model in which the two parameters are correlated. In this 

                                                
3 See Section S1.4 in the Supplementary Information from the Dunn et al. article for a more 

detailed explanation. 
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model, the transition probabilities are calculated for the intersection of the two parameters using 

the more complex model from Section 2 with four types and eight transition probabilities. 

 

Dunn et al. use the "Bayes Factor" to compare the dependent hypothesis to the independent 

hypothesis. Ignoring the details, the Bayes Factor is a number that will be negative when the 

independent hypothesis is to be preferred, and it will be positive when the dependent 

hypothesis is to be preferred. How high (or low) the number is indicates how strong any such 

preference is; the closer to zero, the less telling. As always with such test-statistics, it is difficult 

to decide at which point the strength of the preference becomes significant. The problem is not 

a mathematical one, because the Bayes Factor is distributed according to a chi-square 

distribution. The problem arises because the significance on such a chi-square distribution has 

to be determined relative to the degrees of freedom, and it is not clear how many degrees of 

freedom have to be assumed in the current situation. The manual of BayesTraits (the software 

used by Dunn et al.) suggests to take "degrees of freedom equal to the difference in the number 

of parameters between the two models". That would imply four degrees of freedom for the 

current situation, because the independent model has four parameters (viz. two times two 

transition probabilities), while the dependent model has eight parameters (the eight transition 

probabilities). A chi-square distribution with four degrees of freedom would mean that a Bayes 

Factor greater than 9.5 occurs with a probability of less than 5%, while factors greater than 13.3 

occur with a probability of less than 1%. In contrast, Dunn et al. assume for the interpretation of 

their Bayes Factors (Section S3 of the SI) that "values from 2-5 indicate weak support […]. 

Values from 5 are conventionally considered strong evidence." These values imply a much 

more lenient interpretation of the Bayes factors, approximately assuming a chi-square 

distribution with a single degree of freedom. Notwithstanding such details, the factors can surely 

be interpreted as saying that the stronger positive the value, the more evidence for the 

dependent hypothesis, and the stronger negative the value, the more evidence for the 

independent hypothesis. Values between 5 and -5 are only weakly indicative, with all values 

between 2 and -2 being not telling at all. 
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The Bayes Factors for all combinations of parameters are listed in Section S3 of the 

Supplementary Information in Dunn et al., separated for the four families investigated. The 

values are plotted in Figure 1, ordered by the significance as established by Fisher’s combined 

probability test (more on that below). Basically, the more to the right, the more interesting is the 

correlation. Horizontal lines are added to indicate the non-indicative range between 2 and -2. 

The first important observation to make is that there are almost no negative values attested, and 

the few cases of ‘weakly supportive’ Bayes Factors smaller than -2 never go below -5. This is 

probably the case because the independent model is a special case of the dependent model, 

or, as the authors explain: “the independent model can be expressed as a special case of the 

dependent model, so the test cannot show that the independent model is preferred over the 

dependent; rather it can only show that the dependent model is not superior” (p. S6). This 

means that their approach inherently cannot strongly argue for the independent hypothesis, i.e. 

for the absence of a correlation.  

 

Figure 1. Bayes Factors for the different combinations of word order parameters, ordered by 

Fisher’s meta-significance (stronger significant combinations to the right). Values between 2 

and -2 (indicated by the horizontal lines) are not telling. Only values outside the range between 

5 and -5 show strong indication of any preference. Note that there are no values below -5 

attested, as the method inherently does not allow for strong evidence for the independent 

hypothesis (i.e. the absence of a correlation).  
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Still, looking at the cases with weak support for the independent hypothesis (which is the 

maximum possible given their method), the most strongly negative Bayes Factor are attested 

for the pairs like “relative clause position-subject/verb” (REL-SBV), “demonstrative/noun-relative 

clause position” (DEM-REL) and “demonstrative/noun-subject/verb” (DEM-SBV), which have 

never been claimed to be typologically related. So, in general, Dunn et al. do not find any 

evidence for absence of typological correlations, and the most extreme cases in favour of 

independence are attested for combinations of parameters that never have played any role in 

any typological investigation.  

 

In contrast, there is a set of correlations in which all genealogical families have a Bayes Factor 

above 2, indicating consistent positive support for the dependent hypothesis (though not 

necessarily very strong support in all families). Such consistent positive support is attested most 

clearly for the following well-known correlations (cf. Dryer 1992): 

 

● adpositions - object/verb (combined p = 0.001) 

● adjective/noun - genitive/noun (combined p = 0.005) 

● object/verb - subject/verb (combined p = 0.03) 

● adpositions - genitive/noun (combined p = 0.05) 

 

The above reported ‘combined’ p-values are the combined probabilities for each dependent 

hypothesis using Fisher’s method of meta-analysis.4 Basically, when there are various 

(statistically independent) test results trying to prove the same hypothesis, Fisher’s method 

offers an assessment of the combined probability of all tests together. To calculate these 

combined probabilities, I first established the probabilities of the Bayes Factors using the strict 

interpretation with four degrees of freedom, and then combined these probabilities using 

Fisher’s combined probability test. Negative Bayes Factors have been assigned a probability of 

zero. The above-noted set of four typological correlations all have a combined probability of 5% 

                                                
4 I thank Dan Dediu for this suggestion. 
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or lower, which strongly suggests that there is positive evidence in these cases for the 

dependent hypothesis, i.e. that the parameters are correlated in all lineages investigated. 

 

Summarizing, there is of course variation between linguistic families, but the general tendencies 

across the families seem to be nicely consistent with common assumptions about word order 

regularities in linguistic typology. Contrary to the author’s claim, there appears to be a significant 

correlation for at least four cross-sections of parameters across all lineages studied. Other than 

that, they mostly find only limited and inconclusive evidence, surely not sufficient to disprove 

widespread typological assumption. What would have been really ground-breaking is when 

Dunn et al. could show that any widely assumed universal correlation would be a chimera, but 

they do not have any evidence for such a case, and it even appears that the method in principle 

does not even allow for such conclusions. 

5. Interpreting transition probabilities 

Dunn et al. finish their paper with a second conclusion, namely that “even where we find 

dependencies shared across language families, the phylogenetic analyses show family-specific 

evolutionary processes at work” (p. 81). This claim specifically refers to the fact that the 

combination of the parameter “adpositions” (ADP) and “object-verb order” (OBV) show strong 

evidence for the dependent hypothesis for both Austronesian and Indo-European (both Bayes 

Factors are above 13.3, which amount to a probability of below 1% assuming four degrees of 

freedom). So in this case there is really strong evidence for a correlation in two out of three 

applicable families, while the third (Uto-Aztecan) shows weak evidence (and the combination of 

all three is highly significant, as noted above). Indeed, this combination of parameters seems to 

be the prime case of clear evidence for a typological correlation. However, Dunn et al. proceed 

to argue that even in this case there actually is no consensus between Austronesian and Indo-

European, with reference to their Figure 3. However, this interpretation again seems to be 

misguided. 
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Their crucial Figure 3 shows a rough approximation of the estimated transition probabilities. The 

visual impression suggests rather different transition probabilities comparing Austronesian to 

Indo-European. The authors were kind enough to share some of the raw output of their analysis 

with me, so I was able to extract the real values of these transition probabilities.5 The average 

transition probabilities as estimated by BayesTraits are shown in Figure 2, mimicking Figure 3 

from Dunn et al. In their figure, they only distinguish between prominent transitions (thick 

arrows) and minor transitions (thin arrows).6 This simplification hides the differentiation within 

the thin arrows. Even within the minor transitions there is mostly a strong asymmetry between 

the probabilities into the one direction compared to the reverse direction. In my Figure 2, I have 

drawn the arrows with the exact thickness corresponding to the transition probabilities. This 

illustration much clearer shows the parallelism between the two families, including the same 

asymmetries in the minor transition probabilities.  

                                                
5 The raw output that was made available to me consisted of 100.000 selected iterations of one 

run for each correlation pair in each family. I removed all iterations in which at least one of the 

transition probabilities is zero. A zero transition probability leads to unsolvable equations. I could 

have artificially added some random value to remove the zeros, but I decided to simply ignore 

the iterations with any zero probabilities, as there are still enough iterations remaining. In 

general, different solutions how to deal with the zeros did not seem to change any of the 

calculations here significantly. 

6 For some unknown reason, there is one arrow missing from Figure 3 in Dunn et al. I assume 

that this is simply a printing error. 
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Figure 2. Transition probabilities mimicking Figure 3 from Dunn et al. In this graph, the thickness 

of the arrows corresponds to the actual average transition probabilities. In contrast, Figure 3 

from Dunn et al. only distinguishes between the four major arrows (drawn thick) and all others 

(drawn thin). This rough approximation hides the detailed parallelism between the families 

visible in this more appropriate figure. 

 

The actual values are plotted in Figure 3 here, comparing Austronesian (x-axis) with Indo-

European (y-axis). The grey diagonal line indicates identical probabilities. As can be seen, the 

only substantial difference in the estimated transition probabilities is a preference for 

prepositions+OV to change to prepositions+VO in Austronesian, while there is a contrary 

preference for a change to postpositions+OV in Indo-European. Although this might seem like a 

major difference, the other transition probabilities do not change very much between these two 

families. The limited impact of this single difference becomes even clearer when the stable 

distribution is calculated on the basis of the complete set of transition probabilities. This 

comparison is shown in Figure 4. This figure shows estimates for the stable distribution 

separately for the four different combinations of parameters.7 There is a striking agreement 

                                                
7 On the basis of the raw data made available to me by the authors, I removed all iterations with 

some zeros in the estimated transition probabilities. For each remaining iteration, I calculated 
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between the estimated stable distributions of Austronesian and Indo-European. Basically the 

combinations postpositions+OV and prepositions+VO are frequent in both stable state, while 

the other two combinations are predicted to be extremely rare. As expected from the transition 

probabilities, the stable distribution for postpositions+OV is slighly lower for Austronesian, but 

the hinges in the boxplot still overlap. Likewise, the stable distribution of prepositions+OV is 

slightly lower for Indo-European, but here also the difference is still within the range of the 

hinges of the boxes.  

 

Figure 3. Comparison of the estimated transition probabilities between Austronesian and Indo-

European for the combination postpositions/prepositions and OV/VO word order. 

 

                                                                                                                                          
the stable state, using the equations as discussed in Section 2. The resulting variation in stable 

state proportions between the iterations is shown using boxplots in Figure 3. 
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The most extreme effect of calculating the stable state can be observed for the combination 

postpostions+OV in Austronesian. This combination is extremely rare in Austronesian. In the 

sample as used by Dunn et al, only 7 languages (6%) are of this combination of types. Yet, 

because of their specific distribution in the genealogical tree, the estimate for the stable state is 

much higher (viz. a mean of about 24%). This striking difference between the actual frequency 

and the predicted stable state frequency highlights the strength of the dynamic approach to 

typology. Even in extremely biased distributions as in Austronesian, the stable state still can 

reconstruct more general preferences. 

 

This difference between the actual frequencies and the stable state frequencies in Austronesian 

can be explained as the residue of a founder effect in the rather young Austronesian family. 

Proto-Austronesian most probably had prepositions+VO and almost all Austronesian languages 

still are of the type. In the relatively recent and extremely rapid spread of the Austronesian 

languages throughout the Pacific there has not been enough time for many changes to 

accumulate. This results in a rather skewed distribution of the actual frequencies. Given the 

geographical and genealogical distribution of the few Austronesian languages with 

postpositions+OV (they are all on the eastern coast of New Guinea) it even seems likely that 

there has just been one or two events of this change (possibly contact induced). So the 

probability to lose the original state of prepositions and VO and change to postpositions+OV is 

small. However, the few languages with postpositions+OV are all very close in the family tree, 

which suggests a high stability of this combination. Once the combination arises, it does not 

easily change anymore. So, it seems probable that, given more time, the Austronesian 

languages might develop more instances of postpositions+OV, and this is exactly what the 

predicted stable state describes. It is precisely these kind of dynamics of change that can be 

reconstructed by switching to transition probabilities. 
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Figure 4. Comparison of predicted stable states between Austronesian and Indo-European. 

Although there are lineage-specific details discernible, the general pattern is strikingly similar. 

Two combinations are common, while two others are extremely rare. 

6. Conclusion 

The paper by Dunn et al. (2011) presents a fascinating and important case for a more dynamic 

approach to linguistic typology. Instead of trying to quantify the current state of the world’s 

languages, their approach to language variation attempts to quantify the dynamics of linguistic 

change. If that can be achieved, and I think that Dunn et al. have shown that it is indeed 

possible, then we can finally surpass the old debate of how to integrate historical factors into 

Austronesian Indo-European

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Postpositions, Object-Verb
P

ro
po

rti
on

 in
 s

ta
bl

e 
st

at
e

Austronesian Indo-European

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prepositions, Object-Verb

P
ro

po
rti

on
 in

 s
ta

bl
e 

st
at

e

Austronesian Indo-European

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prepostions, Verb-Object

P
ro

po
rti

on
 in

 s
ta

bl
e 

st
at

e

Austronesian Indo-European

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Postpositions, Verb-Object
P

ro
po

rti
on

 in
 s

ta
bl

e 
st

at
e



 20 

synchronic linguistic typology. Linguistic typology will turn into a diachronic discipline, in which 

synchronic tendencies and universals will be derived from the dynamics of language change. 

 

Unfortunately, the main selling point of the paper by Dunn et al. seems to be a misinterpretation 

of their own results. They conclude their paper saying that “what the current analyses 

unexpectedly reveal is that systematic linkages of traits are likely to be the rare exception rather 

than the rule” (p.82). This does not seem to be accurate. In at least four cases their results 

show strong evidence for the same tendency across all lineages studied, and most others cases 

simply do not show any clear evidence, neither in favour of systematic linkage, nor against it. 

The strongest case of cross-lineage agreement even shows, again in contrast to their explicit 

renouncement, that the same word order dynamics are at work in both Austronesian and Indo-

European, even though the synchronic profiles of these families are strikingly different. 

 

Regrettably, the rather provocative rhetoric of the paper does not serve its goal. By unfoundedly 

stressing the variability of languages and denying off-hand the results of decades of typological 

research, the authors alienate exactly the main group of scientists that would in principle most 

welcome the revolutionary methods and insights from this paper. I hope that this commentary 

can be of assistance in changing the perception of the main results of the Dunn et al. paper. It is 

not the “lineage specific trends” from the title of their paper that are new and noteworthy, it is 

their breakthrough renovation of decades old methodology in linguistic typology. 
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