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Analyzing feature consistency using dissimilarity matrices 
 
In this note, we present three methods to discover the most consistent features in the World Atlas of 
Languages Structures (WALS). These methods measure the fit between each individual WALS fea-
ture and the overall dataset of all features combined. Features that show a strong fit to the overall 
dataset are hypothesised to be more central for the structure of human language than those features 
that show a weak fit. The three techniques we will use are based on (i) MANTEL’s congruence test 
(MANTEL 1967), (ii) the evaluation of feature coherence relative to the overall dataset, and (iii) the 
comparisons of ranks. All three methods attempt to identify those features that fit best to the dataset 
in its entirety, though it turns out that they do not identify exactly the same features. Still, we are able 
to give some indications of the kind of features that appear to be most promising for future research. 
Finally, we investigate whether such highly consistent features might be suitable to uncover genea-
logical relationships between languages.  
 
1. Introduction 
 
 Besides being a printed atlas, the World Atlas of Language Structures (WALS, 
HASPELMATH et al. 2005) is also a database that contains data for 2,560 languages, 
recording characteristic traits for up to 142 predefined features represented by the 
various maps in the atlas (we will use the terms ‘feature’ and ‘map’ interchangea-
bly). One of the many questions that can be tackled with this tremendous resource 
is the question as to whether there are some linguistic features that are more “con-
sistent” than others. Typologically, consistent features are such features that are 
most indicative of the overall structure of a language. In a sense, such consistent 
features would be most indicative of the typological profile, or ‘genius’, of a lan-
guage (if such a typological profile exists at all). On a different level of analysis, 
highly consistent features might also be more predictive of the genealogical rela-
tionships between languages. Both prospects indicate that the search for a proper 
measurement of feature consistency should be an important goal of research (see 
also the papers by WICHMANN & KAMHOLZ and PARKVALL in this issue for related 
issues). In this article, we will propose and compare three different approaches that 
might help us to establish the relative consistency of linguistic features based on 
the WALS data. Our basic assumption is that the consistency of a particular lin-
guistic feature can be established by comparing it to the overall structure derived 
from summarising over all features. More consistent features will show a stronger 
match to that overall structure.  
 The WALS data needs to be analyzed with care (cf. CYSOUW et al. 2005) be-
cause of (i) non-encoded (yet essential and partially presupposed) expert knowl-
edge regarding various specific properties of the features, (ii) non-canonical feature 
values, like “absence” or “other” (meaning “something, but none-of-the-above”) 
and (iii) lateral dependency relationship between concepts. Further, the WALS data 
table is rather sparse as many datapoints are just missing. In spite of such short-
comings, WALS represents a huge amount of information that we deem to deserve 
further exploration. For our present study, we decided to take the data as it is pre-



sented in the WALS, and not to do any time-consuming recoding. The only a pri-
ori correction of the data is that we disregarded the data from map 3 (MADDIESON 
2005), map 25 (NICHOLS & BICKEL 2005a), maps 95, 96, 97 (DRYER 2005a,b,c), 
maps 139, 140 (ZESHAN 2005a,b), and map 141 (COMRIE 2005a). The data in 
maps 3, 25, 95, 96, and 97 are all combinations of data presented individually in 
other maps. There is no new information in these maps, but only different presenta-
tions of the same information already given in other maps. The reason to disregard 
the maps 139, 140, and 141 is of a completely different nature. The maps 139 and 
140 represent data about sign languages. It is not possible to compare these maps to 
all the other maps because there is no overlap with the maps on spoken languages. 
There is nothing inherently problematic that would make sign languages incompa-
rable to spoken languages. However, at present we simply do not have the data to 
make such a comparison. Finally, the map on writing systems (COMRIE 2005a = 
WALS 141) is also not applicable, as there is no information given on individual 
languages, but only about geographical areas in which particular kinds of writing 
systems are particularly prominent. 
 In Section 2, we will first present a few basic definitions regarding dissimilarity 
matrices that will form the basis of our measurements of consistency. Then, in Sec-
tions 3 to 5, we will present our three different approaches to measuring matrix 
consistency. A few basic tests on the validity of these measurements are discussed 
in Section 6. We will then compare the results from the different measurements in 
Section 7. Section 8 contains a few preliminary observations on the usability of 
highly consistent features for the investigation of genealogical relationships. Fi-
nally, Section 9 summarizes our conclusions. 
 
2. Distance matrices 
 
 Given any language L and feature F, WALS assigns to L and F a value F(L)—an 
integer between 1 and, at most, 9—in case that feature is “defined” for L. For the 
many cases where there is no value assigned, we put F(L) := 0. Based on this data, 
we will define a distance matrix describing the pairwise distances between all pairs 
of languages. Given a finite set N, then an N x N distance matrix D is a two-
dimensional array with rows and columns indexed by the elements in N, the entry 
D(L1,L2) at row L1 and column L2 being assumed to record the distance or dissimi-
larity between any two elements L1,L2 of N computed according to some precon-
ceived scheme regarding the elements in N. Thus, an N x N distance matrix is a 
symmetric N x N matrix containing non-negative real numbers as entries and, in 
general, zeros along its diagonal: D(L,L) = 0. Based on the features from WALS 
and a selection L of languages that have good data coverage, we define the follow-
ing L x L distance matrices.  
 First, we define, for every single feature F, a distance matrix DF whose entry 
DF(L1,L2) is given, for any two languages L1 and L2 in L, by the term defined in (1). 
 

(1) 

 



 In words, the “F-distance” is equal to two (i.e. the languages are declared to be 
really different relative to F) whenever the feature F is well-defined for both lan-
guages and the two values F(L1) and F(L2) are distinct in WALS. The distance is 
set to be zero when F is well-defined for both languages, and the two values F(L1) 
and F(L2) this features attains at L1 and L2 in WALS coincide. Most importantly, 
the distance is defined as one when either one (or both) of the two languages is not 
coded for this particular feature. We prefer this definition to simpler ones (i.e. con-
sidering the cases with unavailable data as either all similar or all different) be-
cause we want the “F-distance” to reflect the situation that there is missing infor-
mation in WALS. 
 Second, we define an overall distance matrix D taking account of all features 
simultaneously. In this matrix, the distance between two languages is computed 
only on the basis of available information. To achieve this, we denote by F the set 
of all features under consideration and define, for any language L, the set F(L) as 
the collection of all features F for which WALS provides data, cf. (2).  
 
(2)  
 
 Then, we define the normalized distance between any two languages L1 and L2 
according to (3). 
 

(3) 
 

 
 In words, for quantifying the distance between L1 and L2 only those features are 
considered for which, according to (2), data is available for both languages (i.e. all 
cases where DF(L1,L2) = 1 are ignored). Then, in (3), the distances over all these 
available features are summarised, and divided by the number of available features. 
This procedure assures that the available data in WALS is completely used. For 
every two languages, however, a different set of features might be used, depending 
on the available information. 
 This way, 134 distance matrices of the form DF result, one for each individual 
feature F, and one overall distance matrix D, using all 134 features together. Our 
goal is to identify those features F that somehow harmonize with the overall data. 
The idea behind this goal is to find out which features are the best predictors for 
the overall similarities between languages. To investigate the relation between an 
individual feature F and the overall dataset, we compare each matrix DF with the 
overall D matrix. We will discuss three different methods that can be used for such 
comparisons between distance matrices. First, we will look at MANTEL’s congru-
ence test (Section 3), and then introduce two other methods of our own design: the 
coherence method (Section 4) and the rank method (Section 5). 
 
3. Mantel’s congruence test 
 
 Consider an N x M matrix X providing records regarding a collection M of ex-
periments (measurements) applied to candidates (objects) from a set N. Dividing 



M into two nonempty disjoint subsets M1 and M2, it is natural to ask for the corre-
lation between the results obtained by performing the experiments in M1 and those 
obtained performing by the experiments in M2. To answer this question, the first 
step is to derive corresponding dissimilarity matrices from the N x M1 data matrix 
X1 and the N x M2 data matrix X2. The main idea is that, if two rectangular matri-
ces contain concordant information, the distances derived from them should be 
significantly correlated. However, one cannot use a standard correlation coefficient 
to asses this significance, because the elements in the dissimilarity matrices are not 
independent of each other. For example, the distance between two objects A and B 
is not independent of the distance between object A and another object C because 
A is involved in both. 
 One method to quantify the “congruence” between two dissimilarity matrices 
was first proposed by MANTEL (1967). By combining KENDALL’s W coefficient of 
concordance among matrices, FRIEDMAN’s χ2 statistics, and the associated p-value, 
MANTEL suggested to use the following procedure for measuring the correlation 
between the two similarity matrices X1 and X2. He proposed to arbitrarily permute 
the rows k times within one of the two matrices and recalculate the correlation co-
efficients. If there is some correlation, the disruption caused by the permutations 
should reduce the correlation coefficient. As a measure of congruence between X1 
and X2, he therefore proposed to choose the quotient s(X1|X2) of the number of 
times that the original correlation coefficient (R0) was exceeded by the coefficients 
obtained for the permuted matrices, and the number k of all permutation tests being 
performed. For example, if these coefficients exceeded R0 in only one from one 
thousand permutation tests, this would imply s(X1|X2) = 0.001. Conversely, if the 
matrices were uncorrelated, there is no reason to assume that the permutations 
would decrease the correlation coefficient. They may indeed as well increase it. So, 
we would assume that s(X1|X2) would be close to 0.5. 
 Here, we use Mantel’s test to assess the strength of the correlations between the 
dissimilarity matrices DF (for each individual feature from WALS) and the overall 
dissimilarity matrix D. The smaller the value of s(DF|D), the better the individual 
feature F predicts the overall similarity between the world’s languages.1 
 
4. The coherence method 
 
 Alternatively, we propose to measure, for each of the matrices DF corresponding 
to one particular feature F, its “coherence” with the overall matrix D by calculating 
the triangle coherence index for each feature matrix DF relative to D. To do this, 
we first define the excess of any two elements L1 and L2 relative to a third element 
L3 with respect to a distance matrix M as shown in (4): 
 
(4)   
The excess is, roughly spoken, the extra distance to be travelled between L1 and L2 
when the route is taken via L3, instead of taking the direct path from L1 to L2. 
                                                
1 To calculate the MANTEL statistics, we used the CADM software as described in LEGENDRE & 
LAPOINTE (2004), available online at <http://www.bio.umontreal.ca/casgrain/en/labo/cadm.html> . 



 Based on that concept, the triangle coherence index Δcoh-index(F) of a feature F is 
then defined as shown in (5). For every triplet of languages L1, L2, L3, the quotient 
is taken of the excess relative to the overall matrix D and the excess relative to the 
single feature matrix DF (the quotient is set at infinite when excDF(L1 L2| L3) = 0 
holds). The triangle coherence index for a feature F then is the average of all these 
quotients for all possible triplets from the total set of languages L under considera-
tion. A larger triangle coherence index will indicate a higher degree of coherence 
of a feature matrix DF with the overall matrix D. 
 

(5) 
 

 
5. The rank method 
 
 As a third method to investigate the consistency between a feature and the over-
all dissimilarity matrix D, we propose a rank-based method. The rank rkL1(L2) of a 
language L2 with respect to a language L1 (relative to a distance matrix D) is de-
fined as shown in (6): 
 
(6)  
 
In words, for every language L1, we are counting the number of languages L whose 
distance to L1 that is not larger than the distance between L1 and L2. Metaphorically 
speaking, we are looking for the languages that are at least as good a friend of L1 as 
is L2 (cf. DEVAUCHELLE et al. 2005, ALBU et al. 2006) 
 By using this rank value, we can derive a rank matrix RD from a distance matrix 
D as shown in (7): 
 
(7)  
 
 This rank matrix is not necessarily symmetric, because rkL1(L2) is not necessarily 
the same as rkL2(L1). In general, the rank matrix has values of 1 along its diagonal. 
Higher values on the diagonal will only occur in case there are different languages 
with completely identical datasets. To illustrate the derivation of such rank matri-
ces from distance matrices, consider the example in (8). The distance matrix (8a) 
will be transformed into a rank matrix as shown in (8b). For example, from the per-
spective of L3, all three languages L1, L2, and L3 are at least as similar to L3 as L1, 
so the rank value rkL3(L1) is 3. However, from the perspective of L1, only L1 and L3 
are as similar to L1 as L3. L2 is less similar to L1 than L3. Thus, rkL1(L3) is 2.  
 
(8) a. Distance Matrix 

 L1 L2 L3 
L1 0 4 3 
L2 4 0 2 
L3 3 2 0 



  b. Rank Matrix 
 L1 L2 L3 

L1 1 3 2 
L2 3 1 2 
L3 3 2 1 

 
 Next, we consider, for each feature F and language L, the set L(L,F) of all lan-
guages that share the same feature value with L, as formally defined in (9).  
 
(9)  
 
 If a feature F fits well into the overall data structure encoded by the distance ma-
trix D, then the rank rkL(L´) of the languages L′ in the subset L(L,F) relative to L 
should be significantly smaller, for any given L ∈ L, than the rank rkL(L´´) of the 
languages L´´ in the complement L – L(L,F) relative to L. Metaphorically, the lan-
guages with the same feature value as L should be better friends of L than the lan-
guages with different feature values. Consequently, we propose a measure of fit-
ness for a feature F to the overall matrix D using the ranking procedure as defined 
in (10). 
 

(10) 
 

 
 In words, for each language L, we first take the sum of the ranks, relative to L, of 
all other languages L´ with the same feature value divided by the smallest possible 
value of that sum, and then take the average over all languages in L(F). The lower 
this average, the better the fit between the feature F and the overall matrix D.  
 Note that the meaning of these averages is ‘opposite’ to that of the numbers re-
sulting from the Mantel congruence test and coherence method. In the Mantel con-
gruence test and the coherence method, higher values indicate better fit. In the rank 
method, lower values indicate better fit. Technically speaking, if the coherence 
method and the rank method would agree on which features show a high value, 
then their correlation would be strongly negative. In contrast, if the coherence 
method and the Mantel congruence test would agree, then their correlation would 
be strongly positive. For convenience, we will change the sign in all the correla-
tions concerning the rank measure in the following sections, so that the sign of the 
correlations will have the same interpretation for all three methods. 
 
6. Evaluation of the methods 
 
 To test the three methods, we selected a set of 150 languages from WALS (see 
Appendix B). The selection was mainly based on data coverage, choosing those 
languages for which most datapoints are available in WALS. Further, we choose 
only one language per genus (of course the one with the largest data coverage), in 
order to get a good survey of the worldwide diversity. Further, we also had to se-



lect a subset of the available maps. In WALS, there are 142 different maps. How-
ever, not all of these maps could be used for our analyses. As already mentioned in 
the introduction, we disregarded the maps on sign languages (139 and 140), on 
writing systems (141) and the maps that replicate data from other maps (3, 25, 95, 
96 and 97). However, because of our selection of 150 languages, the data coverage 
for a few additional maps was also very low. In particular, the maps on the paralin-
guistic usage of clicks (GIL 2005 = WALS 142) and the maps on colour terms 
(KAY & MAFFI 2005a,b,c,d = WALS 132, 133, 134, and 135) turned out to be only 
very sparingly represented in our 150-language sample. Removing these maps 
from our data, we were left with 129 different features to use for the analysis. 
 To test how strong the methods depend on the choice of languages, we semi-
randomly divided the 150 languages in three datasets (50 languages per dataset) in 
such a way as to obtain a uniform distribution of the number of datapoints over the 
three datasets. We then ran each of the three methods for each of the three datasets. 
For all three methods, there was a highly significant correlation between the results 
from the three subsets (cf. Table 1, first column). In comparison, the strength of the 
correlations is clearly higher for the coherence method than for the rank methods 
and MANTEL’s congruence test. This indicates that the coherence method is least 
influenced by the choice of languages. Because of the strongly significant correla-
tions between the three datasets for all methods, we will subsequently only use the 
average value over all three datasets as a measure of consistency between each fea-
ture and the overall dataset (these averages are reported on in Appendix D). 
 
 
Table 1. Internal consistency of the methods (reported values are Pearson’s r, sig-
nificances p < .001 are indicated with a star). 
 

Method Correlations be-
tween subsamples 

Correlations with 
data coverage 

Correlations with devia-
tion from homogeneous 
distribution 

Mantel .74* .75* .69* .52 * .08 
Coherence .89* .89* .90* .72 * .29 * 
Rank .59* .64* .67* .18 .10 

 
 
 One problem regarding the WALS data is the large amount of missing data. 
Through our selection of languages and features we already obtained a rather well 
represented subset of the WALS data. However, while choosing 129 features and 
150 languages should ideally result in 129*150 = 19,350 datapoints, there are 
‘only’ 15,589 datapoints available in our selection (80.6 %). Unfortunately, the 
missing data is not equally distributed throughout the table. The maximum of 
available data for a feature is the full 150 languages, but the minimum of available 
data is found for the feature on the word for tea (DAHL 2005 = WALS 138) which 
is available for only 53 languages out of our 150-language sample. Overall, the 
number of languages per feature has a mean of 120, with a standard deviation of 
26.3 (all individual numbers are summarised in Appendix D). With such widely 



varying frequencies of available data, it is important to check post-hoc whether this 
has any influence on our three methods. We correlated the results for each method 
with the number of available data, which yielded significant correlations for both 
the MANTEL congruence test and the coherence method (cf. Table 1, second col-
umn). Both methods thus give higher values when more data is available. The 
strongest effect can be discerned for the coherence method. 
 Another parameter that widely differs between the various features is the concen-
tration of the languages over the feature values. Some features have roughly 
equally distributed numbers of languages over the various values, but other fea-
tures have some values attained by very many languages and other values attained 
by only a few languages (cf. MASLOVA, this issue). We used a normalised version 
of the HERFINDAHL-HIRSCHMAN Index (cf. HIRSCHMAN 1964 on the origin of this 
index) as shown in (11) to investigate the correlation between our three methods 
and the homogeneity of the distribution of the feature values (see Appendix A for 
some notes on the relation between the HERFINDAHL-HIRSCHMAN Index and re-
lated mathematical functions, like the entropy). 
 

(11) 
 

 
 This index CF gives a measure of the homogeneity or ‘concentration’ of the lan-
guages over the various values distinguished by the feature F. For each feature F, 
there are kF values (ranging between 2 and 9). In the formula, for each value i ∈ 
{1, ... , kF}, vi is the proportion of languages that have this particular value. To 
compute the HERFINDAHL-HIRSCHMAN Index, the sum of all squares of these pro-
portions is taken. All other transformations in (11) are only added to normalise this 
raw concentration value to the interval [0,1], with the lower side describing situa-
tions in which all values are roughly equally probable (weak concentration) and the 
higher side indicating situations in which a few values dominate (strong concentra-
tion). The correlations between this measure of concentration and the three meth-
ods to measure consistency are shown in Table 1 (third column). The correlations 
are all very low, the highest (and the only significant) correlation being the one 
with the coherence method. Note that the degree of deviation from homogeneous 
distribution and the data coverage are not correlated with each other at all, so the 
facts that the coherence method shows the strongest correlation with both of them 
are two independent observations. 
 In principle these significant correlations could be a problem for the validity of 
our measurements of consistency. For example, when the amount of available data 
is correlated with a measure of consistency, then is it really consistency that we are 
measuring, or rather the fact that, for some features, we have higher data coverage 
than for others? Fortunately, for the present data and measurements, the attested 
significant correlations are not problematic because the variation of the measures 
also increases with the amount of available data. This effect is illustrated in Figure 
1, showing the correlation between the amount of available data and the measure-
ments of the coherence method. As can be seen, the more data available, the larger 
the variation in the coherence measurements. The line in this plot is the regression 



line. Now, because of the large variation on the right side of the plot, the features 
with high coherence measurements are also high when taken relative to the regres-
sion line. This means that high coherence measures are still high when the amount 
of available data is factored out. Note that this does not hold for low coherence 
measures. Low values of coherence of a feature could be due to low consistency as 
well as to the paucity of available data. The same situation as shown in Figure 1 is 
also found for the other significant correlations in Table 1. 
 
Figure 1. Correlation between the amount of available data and the values from the 
coherence method. 

 
 
7. Comparing the methods 
 
 By using three different approaches to measure consistency, our hypothesis was 
that they all would yield comparable results. If that would be the case, then we 
could be confident that the different measures are indeed an indication of the con-
sistency of a feature. The ideal situation would thus be that, independently of what 
kind of method we would use, the same features would be considered highly con-
sistent with the overall dataset. The actual results are not as equivocally as we 
would have hoped. The Pearson correlation coefficients between the three methods 
are shown in Table 2. The correlations between the coherence and rank methods on 
the one side, and the MANTEL approach on the other, are both very low and not 
significant. However, the correlation between the rank and the coherence method is 
actually rather good, and significant as well. This situation becomes even clearer 
when the factors as considered in the previous section are corrected for. Consider-
ing the significant influences of data coverage and deviation from homogeneous 
distribution, we did a regression analysis and then considered the residuals after 
regression. The correlations between these residuals are shown in Table 3. The as-
sociation between the coherence and the rank method now is slightly higher, and 
the correlation between the rank method and the MANTEL approach becomes even 
worse. 



Table 2. Correlations between the three methods (reported values are Pearson’s r, 
significances p < .001 are indicated with a star). 
 

 Coherence Rank 
Mantel .22 .22 
Coherence  .65* 

 
Table 3. Correlations between the three methods, taking the residuals after regres-
sion relative to data coverage and deviation from homogeneous distribution (re-
ported values are Pearson’s r, significances p < .001 are indicated with a star). 
 

 Coherence Rank 
Mantel -.26 .15 
Coherence  .75* 

 
 
 Because there is no complete consensus between the different methods, we can-
not draw any far-reaching conclusions about general consistency between individ-
ual features and the overall data structure of WALS. However, it is important for 
future linguistic data collection to get at least a rough impression about what kind 
of features among the WALS data show a good consistency with the overall data 
structure. The following interpretation is not derived by strictly defined statistical 
tests, but by a manual inspection of the top ranked features from the three methods.  
 All three methods put various word order features high on their ranking. Specifi-
cally, subject-verb order (DRYER 2005e = WALS 82), object-verb order (DRYER 
2005f = WALS 83), adposition order (DRYER 2005g = WALS 85), genitive-noun 
order (Dryer 2005h = WALS 86), and demonstrative-noun order (DRYER 2005i = 
WALS 88) are ranked high by all methods. This agreement between the methods, 
however, might be due to the fact that there are various maps in the WALS about 
word order, and that these are all more or less significantly correlated to each other.  
 The MANTEL congruence test further argues for the inclusion of features related 
to the morphological structure, both verbal and nominal. In the realm of verbal 
morphology, the marking of clusivity on verbs (CYSOUW 2005a = WALS 40), the 
location of tense/aspect affixes (DRYER 2005j = WALS 69), and the presence and 
order of verbal person marking (NICHOLS & BICKEL 2005b = WALS 23; SIEWIER-
SKA 2005a = WALS 102) are deemed important. In the realm of nominal morphol-
ogy, various features related to case marking end up high on the list (BICKEL & 
NICHOLS 2005 = WALS 21, NICHOLS & BICKEL 2005b = WALS 23, IGGESEN 
2005a,b = WALS 49 and 50, DRYER 2005k = WALS 51 and COMRIE 2005b = 
WALS 98).  
 The coherence method and the rank method argue for the inclusion of different 
features. Besides word order, these methods suggest to include features about the 
presence or absence of strictly defined kinds of consonants, like uvular consonants 
(MADDIESON 2005b = WALS 6), glottalised consonants (MADDIESON 2005c = 
WALS 7), the velar nasal (ANDERSON 2005 = WALS 9), and more generally the 
absence of common consonants (MADDIESON 2005d,e = WALS 5 and 18) and the 



presence of uncommon consonants (MADDIESON 2005f = WALS 19). Further, the 
coherence and rank methods suggest various seemingly disparate features, like the 
passive (SIEWIERSKA 2005b = WALS 107), inflectional optatives (DOBRUSHINA et 
al. 2005 = WALS 73), front rounded vowels (MADDIESON 2005g = WALS 11), 
tone (MADDIESON 2005h = WALS 13), and clusivity and gender in pronouns 
(CYSOUW 2005b = WALS 39; SIEWIERSKA 2005c = WALS 44) as being important 
features. 
 
8. Predicting genealogical relationship 
 
 In the methods that we have presented to measure consistency we have not used 
any information about genealogical relationships. Still, we wanted to see whether 
consistency might be a good predictor for genealogical relationship. To test this 
hypothesis, we constructed a sample of eleven families from WALS, taking three 
languages out of each family (see Appendix C). The choice of families and lan-
guages was completely driven by data availability. We wanted to know how well a 
particular selection of features would be able to distinguish pairs of related lan-
guages from pairs of unrelated languages in this sample. 
 To investigate this, we constructed an overall distance matrix for the 33 lan-
guages sampled on the basis of all data in WALS. The distance matrices were 
compiled using the method as described in (3) above. Likewise, we constructed 
various distance matrices based on a selection of the features. Each selection of 
features was determined by the ranking of features as given by the various meas-
ures of consistency that we have discussed. For every method, we subsequently 
considered the most consistent 25, 50, 75 and 100 features, and constructed dis-
tance matrices on that basis. As a control, we also considered the amount of avail-
able data as a ranking, constructing distance matrices on the basis of the best cov-
ered 25, 50, 75 and 100 features. In this way, we had sixteen different distance ma-
trices for our test sample of 33 languages. 
 All distances in such a matrix were then divided into two groups: one group with 
all distances between pairs of related languages and one group with all distances 
between pairs of unrelated languages. We then wanted to know, whether the dis-
tances between related languages are generally smaller than the distances between 
unrelated languages. To investigate this, we used a t-test to determine the signifi-
cance of the difference between the two groups. It turned out that the two groups 
were significantly different for all sets of features considered. Still, there are clear 
differences between the various selections. This can be seen by considering the t-
test statistics itself (not the significances). These t-test statistics are summarised in 
Figure 2. Selecting features by available data (the dotted line in Figure 2) gives 
some sort of baseline to compare our various methods against. The dotted line 
starts low and rises continuously, though the slope flattens the more features are 
considered. This indicates that we are able to get better differentiation between re-
lated and unrelated language pairs the more features we consider, though there 
seems to be a level of differentiation that cannot be improved upon. Looking now 
at the various selections of features, we see that the best 25 features as selected by 
the three methods all show a clearly stronger differentiation between related and 



unrelated pairs compared to taking the best covered 25 features. Taking the best 25 
features from the MANTEL approach even gives roughly the same differentiation as 
given by considering all features together. Several of the other selections even im-
prove on this. This indicates that, by selecting a set of consistent features, it is pos-
sible to improve the recognition of genealogical relationships compared to simply 
taking all available data. 
 
 
Figure 2. t-test statistic for the differentiation between related and unrelated pairs 
of languages for language distances as established by selected sets of features on 
the basis of the ranking of consistency. 

 
 
9. Conclusions 
 
 We have presented three methods to measure consistency between a feature and 
the overall dataset of WALS: the MANTEL congruence test, the coherence and the 
rank method. All three measures are relatively independent from the choice of lan-
guages, though especially the coherence method shows a tendency to give lower 
values for features with a low data coverage. As unavailable data is a perennial 
problem in typological databases, care should be taken not to use the coherence 
method for features with lots of missing data. Comparing the three methods with 
each other, it turns out that a strong correlation exists between the coherence and 
the rank method, the more so when features with low data coverage are discarded. 
The MANTEL congruence test results in strikingly different consistency values for 
the various features. Apparently, it picks up other distributional patterns compared 
to the coherence and rank methods, though we have not yet been able to exactly 
determine how these differences come about. Impressionistically, the MANTEL 
congruence test favours word order features and features related to morphological 
structure. The coherence and the rank methods also favour word order features, but 
besides that, both these methods prefer various phonological features and the struc-



ture of pronouns. Finally, we considered whether consistent features were also 
genealogically stable features, and we found at least some indication in this direc-
tion. 
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Appendix A: A note on the Herfindahl-Hirschman Index 
 
The HERFINDAHL-HIRSCHMAN index (HHI) as it is used here is a variant of a measure used frequently 
in economics. However, it is in fact only a special case of a more general set of functions to which 
also the entropy belongs. Recall that the entropy is never negative, vanishes in case of extreme con-
centration (only one value is attained), and reaches it maximum log(kF) in case all νi coincide. Actu-
ally, given any (strictly) convex function H with H(0) = H(1) = 0, then putting 

 

 
one has 

 
with equality on the left-hand side if (and only if) all νi coincide, and on the right-hand side if (and 
only if) all but one of the νi vanish. Thus, forming, for example, the terms 
 

 
or  

 
will yield indices exhibiting the same behaviour as the entropy or the HHI, respectively. Indeed, 
 

 
will always hold, with equality on the left-hand side if (and only if) all but one of the νi vanish, and on 
the right-hand side if (and only if) all the νi coincide. Furthermore, for H(x) := x·log(x), this yields the 
entropy, and for H(x) := x·(1-x), it yields the HERFINDAHL-HIRSCHMAN index usedin this paper. 



Appendix B: Sample of 150 languages with maximum data coverage. Maximally one language 
per genus has been sampled. 
 
Abkhaz, Acoma, Ainu, Alamblak, Amele, Apurin, Arabic (Egyptian), Araona, Arapesh, Armenian 
(Eastern), Asmat, Awa Pit, Aymara, Bagirmi, Barasano, Basque, Beja, Berber (Middle Atlas), Brahui, 
Burmese, Burushaski, Cahuilla, Canela-Krah, Cayuvava, Chamorro, Chinantec (Lealao), Chukchi, 
Comanche, Coos (Hanis), Cree (Plains), Daga, Dani (Lower Grand Valley), Diola-Fogny, English, 
Epena Pedee, Evenki, Ewe, Finnish, French, Garo, Georgian, Gooniyandi, Grebo, Greek (Modern), 
Greenlandic (West), Guaraní, Haida, Hausa, Hindi, Hixkaryana, Hmong Njua, Hungarian, Hunzib, 
Igbo, Ika, Imonda, Indonesian, Ingush, Iraqw, Irish, Jakaltek, Japanese, Ju|'hoan, Kannada, Kanuri, 
Karok, Kayardild, Ket, Kewa, Khalkha, Khasi, Khmer, Khmu’, Khoekhoe, Kiowa, Koasati, Korean, 
Koyraboro Senni, Krongo, Kunama, Kutenai, Lakhota, Lango, Latvian, Lavukaleve, Lezgian, Makah, 
Malagasy, Mandarin, Mangarrayi, Maori, Mapudungun, Maranungku, Maricopa, Maung, Maybrat, 
Meithei, Miwok (Southern Sierra), Mixtec (Chalcatongo), Mundari, Murle, Nahuatl (Tetelcingo), 
Ndyuka, Nenets, Nez Perce, Ngiyambaa, Nivkh, Nubian (Dongolese), Nunggubuyu, Oneida, Oromo 
(Harar), Otomi, Paiwan, Paumarí, Persian, Pirahã, Quechua (Imbabura), Rama, Russian, Sango, Sa-
numa, Semelai, Shipibo-Konibo, Slave, Squamish, Suena, Supyire, Swahili, Taba, Tagalog, Thai, 
Tiwi, Trumai, Tsimshian (Coast), Tukang Besi, Turkish, Ungarinjin, Vietnamese, Warao, Wardaman, 
Wari', Wichí, Wichita, Yagua, Yaqui, Yimas, Yoruba, Yukaghir (Kolyma), Yurok, Zoque (Co-
painalá). 
 
 
Appendix C: Test set consisting of eleven groups of three languages from the same family with 
high data coverage . 
 
Afro-Asiatic Hausa, Egyptian Arabic, Hara Oromo 
Altaic Turkish, Evenki, Khalkha 
Austro-Asiatic Vietnamese, Khasi, Khmer 
Austronesian Indonesian, Maori, Malagasy 
Dravidian Kannada, Brahui, Tamil 
Indo-European English, French, Russian 
Nakh-Daghestanian Lezgian, Hunzib, Ingush 
Niger-Congo Supyire, Swahili, Zulu 
Sino-Tibetan Mandarin, Burmese, Meithei 
Trans-New Guinea Amele, Kobon, Kewa 
Uralic Finnish, Hungarian, Nenets 
 
 
Appendix D. Results. 
 
No. Available 

datapoints 
Homo-
geneity  

Mantel  
statistic 

Coherence 
method 

Rank  
method 

1 144 0.174 0.073 0.340 3.589 
2 146 0.195 0.104 0.380 2.498 
4 146 0.172 0.157 0.353 2.886 
5 146 0.495 0.148 0.383 2.331 
6 146 0.597 0.120 0.421 2.332 
7 146 0.748 0.147 0.406 2.206 
8 146 0.580 0.118 0.390 2.754 
9 146 0.224 0.117 0.392 2.355 

10 131 0.257 0.087 0.408 2.511 
11 146 0.721 0.067 0.505 1.306 
12 141 0.172 0.089 0.375 2.730 
13 144 0.374 0.106 0.402 2.266 
14 113 0.368 0.077 0.318 3.759 
15 113 0.630 0.080 0.332 3.474 
16 113 0.513 0.058 0.321 4.180 



No. Available 
datapoints 

Homo-
geneity  

Mantel  
statistic 

Coherence 
method 

Rank  
method 

17 70 0.470 0.073 0.304 3.066 
18 146 0.753 0.134 0.475 1.372 
19 146 0.753 0.103 0.432 2.160 
20 118 0.734 0.145 0.367 2.495 
21 116 0.491 0.202 0.338 2.793 
22 114 0.372 0.093 0.317 3.623 
23 125 0.215 0.204 0.324 3.346 
24 125 0.342 0.151 0.335 3.371 
26 142 0.292 0.216 0.333 3.245 
27 112 0.362 0.060 0.349 3.053 
28 147 0.402 0.174 0.376 2.751 
29 147 0.045 0.144 0.368 2.459 
30 131 0.549 0.195 0.360 3.362 
31 131 0.322 0.205 0.373 2.844 
32 131 0.289 0.193 0.370 3.071 
33 138 0.620 0.149 0.350 3.533 
34 84 0.470 0.079 0.308 3.478 
35 150 0.513 0.113 0.343 3.858 
36 85 0.055 0.092 0.306 3.519 
37 114 0.370 0.085 0.329 3.633 
38 102 0.344 0.091 0.318 3.648 
39 149 0.550 0.120 0.395 2.343 
40 149 0.317 0.201 0.353 3.020 
41 109 0.539 0.020 0.339 3.026 
42 92 0.399 0.030 0.332 2.858 
43 110 0.369 0.023 0.317 4.204 
44 149 0.605 0.143 0.400 2.501 
45 124 0.554 0.112 0.368 2.820 
46 96 0.530 0.129 0.323 3.063 
47 97 0.005 0.055 0.334 2.698 
48 150 0.379 0.148 0.382 2.553 
49 148 0.421 0.263 0.324 3.686 
50 148 0.349 0.234 0.342 3.032 
51 138 0.561 0.237 0.350 2.779 
52 88 0.372 0.113 0.324 2.977 
53 109 0.321 0.108 0.309 4.036 
54 69 0.395 0.062 0.299 3.301 
55 99 0.448 0.024 0.341 2.765 
56 61 0.070 0.030 0.300 3.034 
57 126 0.218 0.135 0.338 3.099 
58 122 0.332 0.104 0.395 2.305 
59 122 0.510 0.132 0.362 2.973 
60 61 0.592 0.076 0.302 2.724 
61 56 0.610 0.050 0.299 2.490 
62 98 0.302 0.044 0.305 4.523 
63 77 0.188 0.132 0.320 2.296 
64 101 0.234 0.084 0.330 2.883 
65 113 0.009 0.103 0.354 2.639 
66 113 0.351 0.189 0.334 2.983 
67 113 0.000 0.155 0.354 2.576 
68 113 0.471 0.153 0.345 2.651 
69 142 0.501 0.227 0.365 2.757 
70 145 0.461 0.160 0.366 2.852 
71 132 0.189 0.065 0.341 3.707 
72 133 0.468 0.077 0.374 2.705 
73 138 0.380 0.054 0.447 2.069 
74 126 0.321 0.053 0.366 2.823 
75 129 0.089 0.118 0.350 3.092 
76 110 0.173 0.090 0.337 3.028 



No. Available 
datapoints 

Homo-
geneity  

Mantel  
statistic 

Coherence 
method 

Rank  
method 

77 145 0.141 0.218 0.373 2.338 
78 145 0.512 0.223 0.358 2.607 
79 132 0.497 0.093 0.370 3.009 
80 132 0.716 0.082 0.406 2.417 
81 141 0.491 0.343 0.340 2.877 
82 148 0.436 0.199 0.422 2.007 
83 147 0.219 0.421 0.388 1.637 
84 84 0.432 0.188 0.307 2.687 
85 146 0.546 0.386 0.389 1.804 
86 146 0.287 0.302 0.394 2.128 
87 144 0.421 0.177 0.385 2.392 
88 144 0.478 0.239 0.396 2.451 
89 137 0.454 0.177 0.380 2.617 
90 121 0.550 0.126 0.349 2.813 
91 81 0.318 0.104 0.317 2.664 
92 124 0.388 0.064 0.327 3.513 
93 129 0.304 0.116 0.371 2.637 
94 113 0.497 0.208 0.332 2.893 
98 145 0.514 0.238 0.358 3.014 
99 133 0.576 0.189 0.346 2.998 

100 150 0.493 0.155 0.359 3.028 
101 134 0.558 0.169 0.349 3.488 
102 150 0.443 0.231 0.369 2.439 
103 150 0.465 0.179 0.358 2.790 
104 150 0.381 0.150 0.358 2.860 
105 114 0.310 0.089 0.332 3.429 
106 89 0.398 0.109 0.317 3.094 
107 150 0.002 0.071 0.432 1.835 
108 126 0.514 0.092 0.391 2.854 
109 125 0.651 0.094 0.349 3.228 
110 69 0.219 0.057 0.306 2.662 
111 138 0.583 0.071 0.398 2.872 
112 134 0.553 0.167 0.352 3.243 
113 149 0.106 0.133 0.379 2.488 
114 149 0.419 0.106 0.342 3.823 
115 80 0.648 0.095 0.328 2.102 
116 132 0.627 0.154 0.362 2.894 
117 79 0.099 0.064 0.300 3.901 
118 111 0.023 0.147 0.329 3.037 
119 111 0.081 0.138 0.355 2.477 
120 111 0.041 0.088 0.354 2.589 
121 57 0.187 0.115 0.297 2.637 
122 99 0.541 0.090 0.337 2.557 
123 74 0.403 0.045 0.305 2.924 
124 90 0.480 0.057 0.316 3.247 
125 94 0.170 0.091 0.322 2.948 
126 103 0.088 0.150 0.324 3.073 
127 98 0.247 0.105 0.328 2.986 
128 83 0.479 0.038 0.327 2.831 
129 72 0.100 0.014 0.314 2.612 
130 68 0.387 0.006 0.321 2.025 
131 111 0.575 0.112 0.345 3.319 
136 114 0.543 0.083 0.376 2.259 
137 114 0.571 0.036 0.381 2.490 
138 53 0.148 0.090 0.299 2.381 
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