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Consider two Languages L1 and L2 with a common ancestor L. For the
investigation of the changes from L to these two languages, we take a list of
meanings (e.g. the list as proposed by Swadesh 1950, 1952) and collect expres-
sions of these meanings in the two languages (‘word lists’). If we find that the
two languages have different reflexes for a particular meaning, than something
has happened.

A central assumption of lexicostatistics in the sense as proposed by Swadesh
is that the probability of stasis (non-change) of the expression of a meaning in
a particular time frame t (say, 1000 years) is constant r. This assumption that
there actually is a constant is of course far from uncontroversial!

Swadesh proposed that there is the following relation between r (‘retention
rate’), t (‘time’) and c (‘common vocabulary’), i.e. the fraction of all meanings
in which nothing has changed. He then established a value for r by comparing
various pairs of language in different point in time, thus using known dates t for
various language pairs with known c.

log r =
log c

t
(1)

Then, if we assume that we know r, then we can estimate the ‘divergence
time’ d from any observed ‘common vocabulary’ c by

d =
log c

2 log r
(2)

Note the appearance of a factor 2 here. This factor is necessary, because the
divergence time is calculated between L1 and L2, which is actually the sum of
the divergence times from the common ancestor L to L1 and L2:

d(L1, L2) = d(L, L1) + d(L, L2) (3)

Assuming the divergence times d(L, L1) and d(L, L2) are the same (which only
makes sense when L1 and L2 are both observed at the same point in time), then

d(L, L1) = d(L, L2) =
d(L1, L2)

2
(4)

But what is the rationale behind this formula? Swadesh refers to radioactive
decay as an inspiration, but why should radioactive decay be a good model for
language change? Sankoff (1972) fleshed out the probabilistic details behind
this formula.
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The first assumption is that, given a meaning m, the probability that the
expression of this meaning will change in a time interval t follows a Poisson
Distribution with a parameter λ defining the possibility of change. Strictly
speaking this assumption would imply that the probability of m changing k
times in this interval is

e−λt(λt)k

k!
(5)

Now, assuming that there has been no change in the expression of m during the
time frame t, then this reduces to the probability that m remains unchanged in
the interval t is

e−λt(λt)0

0!
= e−λt (6)

The second assumption is that the probability of one meaning m1 changing
is independent of a meaning m2 changing. Given that the set of meaning pro-
posed by Swadesh is rather diverse, this seems to be a relatively unproblematic
assumption, though there are still many scenarios possibly in which coupled
changes occur.

If we have a set of unrelated events, the combined probability is given by
the Binomial Distribution. Given a probability p for each individual event, the
probability of observing exactly M events in a set of N cases is(

N

M

)
pM (1 − p)N−M (7)

In our case, the probability of an event was described by e−λt, so the combined
probability of observing M non-changes in a word list of N meanings becomes(

N

M

)
(e−λt)M (1 − e−λt)N−M (8)

Now, given this binomial distribution, we can establish the expected value of
the distribution, which is roughly speaking the average outcome of the process

E[M ] =
1

N

N∑
i=1

(
N

M

)
(e−λt)M (1 − e−λt)N−M (9)

which fortunately reduces nicely to

E[M ] = Ne−λt (10)

which can then be divided by N to get close to Swadesh’ formula (really, we’re
almost there!):

E[
M

N
] = e−λt (11)

As you might have noticed, the probability of no change happening to a single
meaning m is identical to the expected value of the proportion M

N of words that
did not change in a word list, which is an effect of the assumption of Binomial
Distribution.

If we want to estimate the probability function p (here e−λt) in the Bino-
mial Distribution, we can use a so-called Maximum Likelihood Estimator, which
conveniently is the fraction of M and N , so we have again

p̂ =
M

N
= e−λt (12)
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Finally now, we can understand where the Swadesh formula comes from.
Given a particular fraction of c = M

N observed common vocabulary, our best
guess (when we are pressed to make such a guess) at the amount of time t
that might have passed to get to this fraction can be provided by a Maximum
Likelihood Estimator, so

c =
M

N
= e−λt (13)

which can be rewritten as

log c = log e−λt = −λt log e = −λt (14)

or

−λ =
log c

t
(15)

Note that the ‘retention rate’ r in the original Swadesh formula is a constant,
and so the logarithm in log r is also just a constant. The logarithm is only used
in the formula to bring the constant into the same interpretable dimension as
c. However, because r is a fraction between 0 and 1, then the logarithm will
always be a negative number. In the derivation as given above, λ is always a
positive value, and the negative sign is explicitly added. Setting r = e−λ gives
the original Swadesh formula:

log r =
log c

t
(16)
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